
LECTURE 2: CHEBYSHEV APPROXIMATION THEORY AND STRUCTURE 

2.1. Preliminary remarks, Chebyshev zeros and Integration  

“Chebyshev polynomials are everywhere dense in Numerical analysis” 

This remark has been attributed to a number of distinguished mathematicians and numerical 

analysts. There is almost not any area of numerical analysis where Chebyshev polynomials do 

not drop in like surprise visitors. Indeed, there are now a number of subjects in which these 

polynomials take a significant position in modern developments including orthogonal 

polynomials, polynomial approximation, numerical integration and spectral methods for PDEs. 

There are several kinds of Chebyshev polynomials. In particular we will introduce the first kind 

 nT x  and second kind  nU x  as well as a pair of related (Jacobi) polynomials  nV x  and 

 nW x , which we call the Chebyshev polynomials of the third and fourth kinds respectively. In 

addition we have the shifted polynomials        * * * *, , ,n n n nT x U x V x W x .     

Clearly some definition of Chebyshev polynomials is needed right away and therefore we use as 

our primary definitions which is related to trigonometric functions. 

Definition 1.1: The Chebyshev polynomial  nT x  of the first kind and second kind  nU x  are 

the polynomials in x  of degree n defined by the relations  

   cos , cosnT x n x   , (2.1) 
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If the range of the variable x  is the interval then the range of the corresponding variable   can 

be taken as  0, . These ranges are traversed in opposite direction, since 1x    corresponds to 

   and 1x   corresponds to 0  .  

In practice, it is neither convenient nor efficient to work out each  nT x  from first principles. 

Rather by combining the trigonometric identity  

    cos cos 2 cos cos 1n n n       , 

with Definition 1.1, we obtain the fundamental recurrence relation 

          1 1 0 12 , 1, , 2,3,...n n nT x xT x T x T x T x x n      . (2.3) 

Similarly, by combining the trigonometric identity  

    sin 1 sin 1 2cos sinn n n       , 

leads us to a relationship 

          1 2 0 12 , 1, 2 , 2,3,...n n nU x xU x U x U x U x x n      . (2.4) 



We may immediately deduce from (2.1)-(2.4) that first few Chebyshev polynomials of the first 

and second kind are: 

 

It is easy to deduce from (2.3)-(2.4) that the leading coefficient of nx  in  nT x  and  nU x  are 

12n  and 2n  respectively.   

Definition 1.2: The Chebyshev polynomial of the third kind  nV x  and fourth kind  nW x  are 

the polynomials in x  of degree n defined respectively by  
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These polynomials are sometimes referred to as the “airfoil polynomials” but Gautschi (1992) 

named them the “third” and “fourth” kind Chebyshev polynomials. 

Since  
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implies that 
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From the Definition 1.2 and Eq. (2.7) we can list down few terms of Chebyshev polynomials of 

the third and fourth kinds 



 

Note that 
nV  and 

nW  are neither even nor odd (unlike 
nT  and 

nU ). We have seen that the leading 

coefficient of nx  is 2n  in both 
nV  and 

nW . 

Properties and relationships 

We can deduce relationship of Chebyshev polynomials  
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Evaluation of the product 
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Chebyshev polynomials zeros and extrema 

The Chebyshev polynomials of degree 0n   of all four kinds have precisely n  zeros and 1n  

local extrema in the interval  1,1 . Note that 1n  of these extrema are interior to  1,1  (in the 

sense that the gradient vanishes) and the other two extrema being at the end points 1 (where the 

gradient is non-zero). 

From formulas (2.1)-(2.2), the zeros for  1,1x  of  nT x  and  nU x  must correspond to the 

zeros for  0,   of cosn  and  sin 1n   so that the zeros of  nT x  and  nU x  are 
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The zeros of  nV x  and  nW x  occur at  
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The second term in each equations of (2.10)-(2.11) is called their natural order.  

The internal extrema of  nT x  correspond to the extrema of cosn , namely the zeros of sin n , 

since  
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Hence, including those at 1x   , the extrema of  nT x  on  1,1  are 
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These are precisely the zeros of    2

11 nx U x . The extrema of      , ,n n nU x V x W x  are not 

in general as readily determined indeed finding them involves the solution of transcendental 

equations. For example 
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On the other hand, from the Definitions 1.1-1.2 we can show that  
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Hence the extrema of the weighted polynomials  21 nx U x ,  1 nxV x ,  1 nxW x  are 

explicitely determined and occur, respectively at 
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Evaluation of an integral 

The indefinite integral of  nT x  can be expressed in terms of Chebyshev polynomials as follows 
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Clearly this result can be used to integrate the sum 
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where 0A  is determined from the const of integration and  
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There is an interesting and direct integral relationship between the Chebyshev polynomials of 

the first and second kinds, namely 
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Hence the sum  
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Can be integrated immediately to give 

    
1

n
r

n r

r

b
S x dx T x C

r

  . (2.21) 

 

 



2.2. Orthogonality and Least-Square Approximation  

From minimax to least squares 

Orthogonal polynomials have a great variety and wealth of properties, many of which are noted 

in this section. Indeed, some of these properties take a very concise form in the case of the 

Chebyshev polynomials, making Chebyshev polynomials of leading importance among 

orthogonal polynomials – second perhaps to Legendre polynomials (which have a unit weight 

function), but having the advantage over the Legendre polynomials that the locations of their 

zeros are known analytically. The continuous and discrete orthogonality of the Chebeyshev 

polynomials may be viewed as a direct consequence of the orthogonality of sine and cosine 

functions of multiple angles, a central feature in the study of Fourier series.  

Finally, the Chebyshev polynomials are orthogonal not only as polynomials in the real variable  

on the real interval  but also as polynomials in a complex variable  on elliptical contours 

and domains of the complex plane (the foci of the ellipses being at  and ). This property is 

exploited in fields such as crack problems in fracture mechanics (Gladwell & England 1977) and 

two-dimensional aerodynamics (Fromme & Golberg 1979, Fromme & Golberg 1981), which 

rely on complex-variable techniques. More generally, however, many real functions may be 

extended into analytic functions, and Chebyshev polynomials are remarkably robust in 

approximating on  functions which have complex poles close to that interval. This is a 

consequence of the fact that the interval  may be enclosed in an arbitrarily thin ellipse 

which excludes nearby singularities. 

2.3 Orthogonality of Chebyshev polynomials (Orthogonal polynomials and weight 

functions) 

Definition 1.3: Two functions  and  in  are said to be orthogonal on the interval 

 with respect to a given continuous and non-negative weight function  if  
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if we use the inner product notations 
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where  and  are functions of  on , then the orthogonality condition (2.22) is 

equivalent to saying that  is orthogonal to  if 

 , 0f g  . (2.24) 

The formal definition of an inner product (in the context of real functions of a real variable – see 

Definition 4.3 for the complex case) is as follows: 

Definition 4.2: An inner product ,   is a bilinear function of elements , , ,...f g h of a vector 

space that satisfies the axioms: 
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4.  for any scalar . 

An inner product defines an  – type norm 
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Here we shall be concerned with families of orthogonal polynomials  where 

 is of degree  exactly, defined so that  
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Clearly, since  is non-negative, 

  (2.27) 

The requirement that  should be of exact degree , together with the orthogonality condition 

(2.26), defines each polynomial  uniquely apart from a multiplicative constant. The definition 

may be made unique by fixing the value of  or of its square root . In particular, we 

say that the family is orthonormal if, in addition to (2.26), the functions  satisfy 

  (2.28) 

2.4 Chebyshev polynomials as orthogonal polynomials 

If we define the inner product (2.23) using the interval and weight function 

  (2.29) 

then we find that the first kind Chebyshev polynomials satisfy 
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Hence 

  , 0 ,i jT T i j   (2.31) 



and   , 0,1,...iT x i  form an orthogonal polynomial system on  with respect to the weight 
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while 
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The system  iT  is therefore not orthonormal. We could, if we wished, scale the polynomials to 

derive the orthonormal system 
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but the resulting irrational coefficients usually make this inconvenient. It is simpler in practice to 

adopt the  iT  we defined initially, taking note of the values of their norms (2.32)-(2.33). 

The second, third and fourth kind Chebyshev polynomials are also orthogonal systems on  1,1 , 

with respect to appropriate weight functions: 
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These results are obtained from trigonometric relations as follows: 

 

     

        

   

    

     

1
1 22

1

1 1 1
1 22 2 22 2

1

0

0

, 1

1 1 1

sin 1 sin 1

Since sin  sin 1

1
cos cos 2 0, .

2

i j i j

i j

i

U U x U x U x dx

x x U x x U x dx

i j d

U x i

i j i j d i j





  

 

  







 

   

  

 

      









  



 

       

        

1
11 2
2

1

1
1 11 22
2 2

1

0

, 1 1

1 1 1

1 1
2 cos cos

2 2

i j i j

i j

V V x x V x V x dx

x x V x x V x dx

i j d


  









  

   

   
     

   







  

Since    

1
1 1 2

2
2 2

1 1
1 1 cos 2cos 2 cos

2 2
x   

 
     

 
  and    

1

2
1

1 2 cos
2

ix V x i 
 

   
 

 we have 

     
0

, cos 1 cos 0, .i jV V i j i j d i j


          

Now 

 

       

        

1
11 2
2

1

1
1 11 22
2 2

1

0

, 1 1

1 1 1

1 1
2 sin sin

2 2

i j i j

i j

W W x x W x W x dx

x x W x x W x dx

i j d


  









  

   

   
     

   







  

Since    

1
1 1 2

2
2 2

1 1
1 1 cos 2sin 2 sin

2 2
x   

 
     

 
 and    

1

2
1

1 2 sin
2

ix W x i 
 

   
 

 we have 

     
0

, cos cos 1 0, .i jW W i j i j d i j


          

The normalizations that correspond to these polynomials are as follows (for all 0i  ): 

  
2 2

0

1
, sin 1 ;

2
i i iU U U i d



       (2.34) 

 
2 2

0

1
, 2 cos ;

2
i i iV V V i d



  
 

    
 

  (2.35) 

 
2 2

0

1
, 2 sin .

2
i i iW W W i d



  
 

    
 

  (2.36) 

(Remember that each of these three identities uses a different definition of the inner product 

.,. , since the weights  w x  differ.) 

2.5 Orthogonal  polynomials and best 2L  approximations 

Let us consider the best 2L  polynominal approximation of a given degree, which leads us to an 

orthogonality property. 



The theorems in  this section are valid not only for the inner product (4.2) but for any inner 

product .,.  as defined by Definition 4.2 

Theorem 4.3: The best 
2

L  polynomial  B

np x  of degree (or less) to a given (
2L -integrable) 

function  f x  is unique and is characterized by the (necessary and sufficient) property that 

 , 0B

n nf p p   (2.37) 

for any other polynomial np  of degree n. 

Proof:  

Part 1, (Necessity): Write :B B

n ne f p  . Suppose that, for some polynomial np  

 , 0B

n ne p   

Then, for any real scalar multiplier  ,  

2 2

2

2 222

(

,

, 2 , ,

2 ,

B B

n n n n

B B

n n n n

B B B

n n n n n n

B B B

n n n n n

f p p e p

e p e p

e e e p p p

e e p p e

 

 

 

 

   

  

  

   

 

for some small   of the same sign as ,B

n ne p . Hence B

n np p   is a better approximation than 

B

np  for this value of   ,contradicting the assertion that B

np  is a best approximation. 

Part 2, (Sufficiency): Suppose that (2.37) holds and that nq  is any specified  polynomial of 

degree   n,   not identical to B

np .Then 

2 2 22

2

( )

( ), ( ) ,

, 2 ,

0

B B B B

n n n n n n

B B B B B B

n n n n n n n n

B B B B

n n n n n n n

B

n n

f q f p e p q e

e p q e p q e e

p q p q e p q

p q

      

     

    

  

 

From (2.37), therefore 
2 2

n nf q f q   . 

Since nq  is arbitrary, B

np  must be a best 2L  approximation. It must  also  be unique, since  

otherwise  we  could  have  taken nq  to  be  another  best  approximation and  obtained the last 

inequality as a contradiction. 



Corollary 4.1 If  n  being exact degree i and an orthogonal polynomial system on [a, b] then:  

1) The zero function is the best 2L  polynomial approximation of degree (n-1) to  n  on [a,b].  

2)  n is the  best 
2L approximation to zero on [a,b] among  polynomials of degree n  with  the 

same leading  coefficient. 

Proof: 

1. Any polynomial  1np   of degree   n-1  can be written in the form   

1

1

0

.

n

n i i

i

p c






  

Then 

1 1

1

0 0

0, , , , 0

n n

n n n i i i i n

i i

p c c    
 



 

      

by the orthogonality of  i . The result follows from Theorem 4.1. 

2) Let nq  be any other polynomial of degree   n  having the same leading coefficient  as 

 n .Then - n  is a  polynomial of degree   n-1  .We can therefore  write  

 
1

0

,

n

n n i i

i

q c 




   

and deduce  from  the  orthagonality of   i  that  

 , 0n n nq    

Now we have  

   

2 2

2

, ,

, 2 ,

0, using (4.16)

n n n n n n

n n n n n n n

n n

q q q

q q q

q

  

   



  

    

  

 

Therefore n is the best approximation to zero . 

The interesting  observation  that follows from Corollary  4.1 A is that every polynomial in an 

orthogonal system has a minimal  2L  property -  analogous to the minimax property of the 

Chebyshev polynomials. Indeed, the four kinds of Chebyshev polynomials , , , ,n n n nT U V W  being 

orthogonal  polynomials each have a minimal property on [-1,1] with respect to  their  respective  

weight  functions  



2

2

1 1 1
, 1 , ,

1 11

x x
x

x xx

 


 
, 

over all polynomials with the same leading coefficients. 

The main result above,namely Theorem 4.1 is essentially  a  generalization  of the  statement 

that  the shortest  distance  from  a  point  to  a  plane  is  in  the  direction  of  a vector 

perpendicular  to all vectors in that plane. 

Theorem 4.1 is important in that it leads  to a very  direct  algorithm for  determining the best 

2L  polynomial approximation B

np  to f : 

Corollary 4.1 B   The best 
2L  polynomial approximation B

np of degree  n to  f  

  
1

0

,

n

B

n i i

i

q c 




  

where   
, ,

,
.

i

i

i i

f
c



 
  

Proof: For  0,1...,k n  

 

0

1

0

, ,

,

, 0, by definition of  

n

B

n k i i k

i

n

k i k

i

k k i k k

f p f c

f c

f c c

  

  

  





  

  

   



  (2.38) 

Now, any polynomial np  can be written as  

 
0

n

n i i

i

p d 


  

and hence 

   
0

, , =0  by  (17)

n

B B

n n i n i

i

f p p d f p 


    

Thus B

np  is the best approximation by Theorem 4.1  

Example  4.1: To illustrate Corollary  4.1 B, suppose that we wish to determine the best 

2L linear approximate 1

Bp to ( )f x = 21 x  on [-1,1] with  respect to the weight 

1
2

2( ) (1 )w x x


  .In this case { ( )}iT x  is the appropriate orthogonal system and hence  

   1 0 0 1 1( ) ( )Bp c T x c T x   



where by  (4.17) 

  

1
2

1
2

1
2 2

0 1
0

0 0

1
2 2

0 1
1

0 0

(1 ) (1 ),

,

(1 ) (1 ),

1,

2

x x dxf T
c

T T

x x dxf T
c

T T













 
 

 
 




 

Substituting cos ,x   

 

2

0
0 0

2 31
1 03

0

1 1 1
sin (1 cos 2 ) ,

2 2

2 2
sin cos [ sin ]

c d d

c d

 




   
 

   
 

   

 

 


 

and therefore  

   1 1
1 0 12 2

( ) 0 ( ) ,Bp T x T x    

so that the linear approximation reduces to a constant in this case. 

 

2.6 Orthogonal polynomial expansions 

On the assumption that it is possible to expand a given function ( )f x  in a (suitably convergent) 

series based on a system { }k  of polynomials orthogonal over the interval [a,b] { }k being of 

exact degree k ,we may write 

  
0

( ) , ( ), , .i i

k

f x c x x a b




   (2.39) 

It follows, by taking inner products with k , that 

 1 1,

0

, , ,k k k k k

k

f c c    




   

Since , 0i k    for .i k This is identical to the formula for kc given in Corollary 4.1B.Thus 

(applying the same corollary)an orthogonal  expansion has the property  that its partial  sum of 

degree n is the best  2L  approximation of degree   n  to its  infinite sum.Hence  it is  an ideal  

expansion  to use in the 2L  context.In particular,the four  Chebyshev  series  expansions have 

this property on [-1,1] with respect to their  respective weight  functions 
1 1

2 2(1 ) (1 ) .x x
 

   

 



2.7 Convergence  in 
2L  of orthogonal expansions 

Convergence questions will be considered in detail in Chapter 5, where we shall restrict 

attention to Chebyshev  polynomials and  use Fourier series theory.However, we may easily 

make some  deductions from general orthogonal  polynomial properties. 

In particular, if f  is continuous, then we know (Theorem 3.2) that  arbitrarily accurate 

polynomial approximations exist in  [ , ],C a b  and it follows from Lemma 3.1  that these are also  

arbitrarily accurate in  2L [a,b]. However, we have shown in Section 4.3.1  that the nth degree 

polynomial, ( )nP x  say, obtained by truncating an  orthogonal  polynomial expansion  is a best 

2L  approximation. Hence (a fortiori)  nP  must also achieve an arbitrarily small 2L  error 

2nf P   for  sufficiently large  n .This gives the following result. 

Theorem 1.3  If f  is in [ , ],C a b ,then  its expansion in orthogonal polynomials converges in 

2L (with respect to the appropriate  weight  function). 

In Chapter 5, we obtain  much more powerful  convergence  results  for Chebyshev series, 

ensuring 2L  convergence  of the  series  itself  for f  in  2L [a,b] and L  convergence of  Cesaro 

sums of  the series for f in [ , ],C a b  

Recurrence relations 

Using the inner product  (4.2) namely 

   , ( ) ( ) ( )
b

a

f g w x f x g x dx   

we note that  

   
, ,

, ,

f g g f

xf g f xg




  

The following formulae uniquely define an orthogonal polynomial system { }i , in which i  is a 

monic  polynomial (i.e., a polynomial  with  a leading coefficient of unity) of  exact degree i . 

Theorem 1.3 The unique system of monic polynomials{ }i  with i  of exact degree i , which are  

orthogonal on [a,b] with respect to ( )w x  are defined by  

 

0

1 1

( ) 1,

( ) ,

( ) ( ) 1( ) 2( ),n n n n n

x

x x a

x x a x b x





  



 

    

 (2.40) 

where  



   
1, 1,

1, 1,

,
,

n n

n

n n

x
a

 

 

 

 

     
1 1

2 2

,

,

n n

n

n n

b
 

 

 

 

  

Proof:   This is readily shown by induction on  n  .It is easy to shown that the polynomials 
n  

generated by (4.21) are all monic.We assume that the polynomials 0 1 1, ,....... n     are 

orthogonal,and we then need to test that n ,as given by (4.21) is orthogonal to  

( 0,1,.... 1).k k n    

The polynomial kx  is a monic polynomial of degree   1,k  expressible in the form 

    
1( )

1

( ) ( ),

k

k k x i i

i

x x c x  



   

so that using (4.20), 

  
1 1

1 2 1 2 1 1

, , 0( 2),

, , , .

n k n k

n n n n n n

x x k n

x x

   

     

 

     

   

 
 

  For  k<n-2,  then  we  have  

  1 2, , , , 0n k n k n n k n n kx a b             

While 

 

2 1 2 1 2 2 2

1 1 1 1

1 1 1 1 1 2 1

1 1 1 1

, , , ,

, 0 , 0,

, , , ,

, , 0 0.

n n n n n n n n n n

n n n n

n n n n n n n n n n

n n n n

x a b

x a b

x x

       

   

       

   

      

   

      

   

  

   

  

   

 

Starting  the induction is easy and the result follows. 

        We have already established a recurrence relation for each  of the four kinds of Chebyshev 

polynomials.We  can verify that (4.21) leads to the same recurrences. 

        Consider the case of the polynomials of the  first kind.We convert ( )nT x  to a monic 

polynomial by  writing  1

0 0 , 2 ( 0).n

n nT T n      Then we can find the inner products: 



  

1

0 0
21 0

1

0 0
21 0

21
2

21 0

21
2

21 0

1
, ,

1

1
, cos 0

1

( ) 1
, cos ,

21

( )
, cos cos 0

1

n
n n

n
n n

T T dx d
x

xT T dx d
x

T x
T T dx d

x

xT x
xT T dx n d

x









 

 

  

  









  


  


  


  


 

 

 

 

 

 Therefore 1 0, 0( 1),na a n    and  

 

1 1 1 1

2

0 0 0 0

2 2

1 11 1

2 3 3
2 2 2 2

, , 1
,

, , 2

2 ,2, 1
( 2).

, 42 ,2

n n

n nn n

n n
n n n n

T T
b

T T

T T
b n

T T

 

 

 

 

 

  

 
   

  

   

 

So 

  

0

1

2 1 0

1 2

1,

,

1

2

1
( 2).

4
n n n

x

x

x n





  

    





 

 

 

Hence the recurrence (1.3) for nT . We may similarly derive the recurrences (1.6) for nU  and 

(1.2) for nV  and nw , by using their respective weight functions to obtain the appropriate na  and  

nb   (see Problem 5) 

6.3   Chebyshev interpolation formulae  

We showed in Section  4.6   that the Chebyshev polynomials { ( )}iT x  of degrees up to n  are 

orthogonal in a discrete sense on the set  (6.3)   of zeros { }kx  of  1( )nT x .Specify 

                             
1

1

0 ( )

( ) ( ) 1 0

1 0

2

n

i k j k

k

i j n

T x T x n i j

i j n






  


   
   



                                       (2.41) 

This discrete orthogonality property leads us to a very efficient  interpolation  formula.Write the   

n th  degree polynomial ( )np x ,interpolating ( )f x  in the points               ,as a sum of Chebyshev  

polynomials in the form 



                                                    '

0

( ) ( )

n

n i i

i

p x c T x


                   (2.42) 

Theorem   6.7: The coefficients ic      in  (6.13)  are given  by  the  explicit formula 

                                             
1

1

2
( ) ( ).

1

n

i k i k

k

c f x T x
n







                       (2.43)  

Proof:   If we set   equal  to ( )np x   at the points { }kx ,then  it  follows  that  

                                         '

0

( ) ( ) ( ).

n

k k i k

i

f x f x T x


  

Hence,multiplying  by 
2

( ).
1

i kT x
n

  and  summing, 

                               

1 1

'

1 0 1

2 2
( ) ( ) ( ) ( )

1 1

n n n

k i k i i k j k j

k i k

f x T x c T x T x c
n n

 

  

 
  

  
    

from  (6.12) giving the formula (6.14). 

Corollary  6.7 A Formula  (6.14) is equivalent to a discrete  Fourier  transform of  the  

transformed  function 

                                                             ( ) (cos ).g f   

Proof: We have   '

0

(cos ) cos

n

n i

i

p c i 


  with  

                                      

1

1

2
( )cos

1

n

i k k

k

c g i
n

 






                       (2.44) 

with   

                                                
1
2

( )
.

1
k

k

n








                                      (2.45) 

Thus   { }ic  are  discrete  approximations to  the  true  Fourier cosine  series  coefficients 

                                          
1

( )cos ,S

ic g i d



  

 

                   (2.46) 

obtained by applying  a trapezoidal quadrature rule  to the (periodic) function  ( )g   with equal 

intervals  /( 1) int kn betweenthe po s  .Indeed,a trapezoidal rule approximations to   (6.17) 

,valid  for any periodic function  ( )g  ,is 



                                              
1 1 1

2 2
( ) ( )1

cos ,
1 1 1

n

S

i

k n

k i k
c g

n n n

 







  
 

   
  

which gives exactly the formula (6.15) for ic (when   we note that the fact that both ( )g   and  

cos i  are even functions implies  that the k th and  (1-k)th  terms in the summation aer 

identical) 

 

Second-kind interpolation  

Consider in this case interpolation by a weighted polynomial 

2

11 ( ) ( ),n nx p x onthe zerosof U x  namely 

                        cos ( 1,....., 1).
2

k

k
Y k n

n


  


 

Theorem   6.8  the weighted  interpolation  polynomial to ( )f x  is given by  

                              2 2

0

1 ( ) 1 ( ),

n

n i i

i

x p x x c U x


                      (2.47) 

with coefficients given by  

                            
1

2

1

2
1 ( ) ( ).

1

n

i k k i k

k

c y f y U y
n





 

                       (2.48) 

Proof:   From (4.50)  with  n-1  replaced  by  n+1, 

                           

1

2

1
21

0, ( );
(1 ) ( ) ( )

( 1), .

n

k i k j k

k

i j n
y U y U y

n i j n





 
  

  
                    (2.49) 

If we set 21 ( ) ( ),k n k ky p y equal to f y we obtain  

                               2

0

( ) 1 ( )

n

k k i i k

i

f y y cU y


   , 

and hence, multiplying by 22
1 ( )

1
k j ky U y

n



 and summing over    k , 

       
1 1

2 2

1

1 0 1

2 2
1 ( ) ( ) 1 ( ) ( )

1 1

n n n

k k j k k i k j k i

k i k

y f y U y c y U y U y c
n n

 

  

 
    

  
              

 by    (2.50) 

    Alternatively, we may want to interpolate at the zeros of 1( )nU x   together with the points 

1,x    namely  



                                                cos ( 0,...., ).k

k
y k n

n


   

In this case, however, we must   express the  interpolating polynomial as a sum of first-kind 

polynomials,  when we can use the discrete   orthogonality    formula   (4.45) 

                           '' 1
2

0

0, ( );

( ) ( ) , 0 ;

, 0; .

n

i k j k

k

i j n

T y T x n i j n

n i j i j n

 


   
    

                (2.51) 

(Note the double prime indicating that the first and last terms of the sum are to be halved.) 

    The interpolating polynomial is then  

    ''

0

( ) ( )

n

n i i

i

p x c T x


                  (2.52) 

with coefficients given by  

                                                    ''

0

2
( ) ( ).

n

i k i k

k

c f y T y
n



                         (2.53) 

Apart from a factor of 2 / ,n  these coefficients make up the discrete Chepyshev  transform 

Third and fourth-kind interpolation 

Taking as interpolatin points the zeros of 1( ),nV x  namely  

                                           
 1

2

3
2

cos ( 1,....., 1).k

k
x k n

n


  


 

we have formula,for  , ,i j n  

                           
1

3
21

0
1 ( ) ( )

n

k i k j k

k

i j
x V x V x

n i j






  

 
                                 (2.54) 

Theorem 6.9     The weighted interpolation polynomial to 1 ( )x f x  is given by 

                                 
0

1 ( ) 1 ( )

n

n i i

i

x p x x c V x


                               (2.55) 

where  

                                  

1

3
2 1

1
1 ( ) ( ).

n

i k k i k

k

c x f x V x
n





 

                                 (2.56) 

Proof: If we set 1 ( )k n kx p x   equal to 1 ( )k kx f x ,we obtain 



                                  
0

1 ( ) 1 ( ),

n

k k k i i k

i

x f x x c V x


     

and hence,multiplying by 
3
2

1
1 ( )k i kx V x

n



  and summing  over   k , 

   
1 1

13 3
2 21 0 1

1 1
1 ( ) ( ) 1 ( ) ( )

n n n

k k i k i k k i k

k i k

x f x V x c x f x V x c
n n

 

  

 
    

  
                  (2.57) 

   The same goes for interpolation at the zeros of 1( )nV x ,namely  

                           
 

3
2

2
cos ( 1,....., 1).k

n k
x k n

n

 
  


 

If we replace „V‟  by „‟W‟‟ and „ 1+x‟ by „1-x‟ throughout. 

Alternatively,we may interpolate at the zeros of ( )V x together with one end point x=-1; i.e.., at 

the points 

 
 

 
1
2

3
2

cos , 1,....., 1 .k

k
x k n

n


  


 

where we have the discrete orthogonality formulae (the notation    indicating that the last 

term of the summation  is to halved) 

                           
1

1
2

1

1
2

0 ( )

( ) ( ) 0

1 0 .
( )

2

n

i k j k

k

i j n

T x T x n i j

i j n
n








  


   
   
 


                 (2.58) 

The interpolating polynomial is then  

 '

0

( ) ( )

n

n i i

i

p x c T x


      (2.59) 

with coefficients  given by  

 

1

1
2 1

2
( ) ( ).

n

i k i k

k

c f x T x
n









  (2.60) 

 

 

 



Gauss-Chebyshev Quadrature Formula And Its Estimation 

Gauss-Chebyshev quadrature formula (Mason [1, pp. 181-183]) 

Theorem 1: If  are the  zeros of  , and   is the system of 

polynomials,   having the exact degree , orthogonal with respect to  on , then  

,         (1) 

      (2) 

quadrature formula (1) with coefficients (2) gives an exact result whenever   is a polynomial 

of degree  2n-1  or less. Moreover, all the coefficients  are positive in this case. 

Theorem 2: (Mason [1, pp. 148]) If  are the zeros of polynomial , 

then the Lagrange polynomials defined by (2) may be written in the form   

, 

where   denotes the derivative of  .  

Particularly, in the case of Chebyshev polynomials we have  

Theorem 2: In the Gauss-Chebyshev quadrature formula  

 

where  are the n zeros of , the coefficients  are as follows: 

1. For , then   . 

2. For , then   . 

3. For , then   . 

4. For , then   . 

Error estimation of truncated Chebyshev polynomials  (Mason [1, pp. 131]) 

Let truncated Chebyshev polynomials be given by 

  

Theorem 3: If the function   has  continuous derivative on [-1,1] then 

 , 

for all . 



Error estimation of Gauss-Chebyshev quadrature formula (Kythe and Schaferkotter  [2, pp. 

109]) 

Theorem 4: If a function  has bounded derivative of order  , then error term of Gaussian 

quadrature rule is given by 

 

where  is the leading coefficients of  and  is the orthogonal polynomials with respect 

to  on  and  

  . 

Particularly, for the Gauss-Chebyshev  QF of second kind we have 

  

 


